Mark Scheme - AS 2.8 Instrumental Analysis

1 (a) (i) % H = 14.3 (1)

(ii) M_r = 42/ largest fragment has mass 42 (1)

- (iii) CH₃ is present [1]
- (b) 1 mark for each [3]

Total [9]

(a) (i) 1 mark for arrows in first diagram; 1 mark for arrow in second diagram;
 1 mark for all charges

2 max if incorrect isomer given

[3]

- (ii) 2-bromopropane formed from a secondary carbocation (1) Secondary carbocations are more stable than primary carbocations (1) [2]
- (b) Empirical formula = C₃H₅Br (1) Molecular formula = C₃H₅Br

(must show use of mass spectrum to gain this mark) (1)

Two molecular ion peaks as there are two isotopes of bromine (1)

Peaks at $15 = CH_3^+$ and $41 = C_3H_5^+$ (1)

 $3030 \text{cm}^{-1} = \text{C-H}$ (1)

Molecule is:

QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1]

Total [12]

3 (a) (i) Mass C = $1.79 \times 12/44 = 0.488$ (g) [1] (ii) Mass O = 0.65 (g) ecf from part (i) [1] C: H: O = 0.488/12 : 0.061/1 : 0.65/16 = 0.0407 : 0.061 : 0.0406 (1)(iii) = 2:3:2 empirical formula is C₂H₃O₂ (1) No ecf from incorrect ratios [2] (iv) Mr of empirical formula = 59 so molecular formula is C₄H₆O₄ so F is acid 2/ molecular formula acid 1 is C₅H₅O₂ so empirical formula is not C₂H₃O₂ molecular formula acid 2 is C₄H₆O₄ so empirical formula is C2H3O2 [1] Bromine turns from brown/red-brown to colourless for Acid 1 (v) [1] (vi) HHHH [1] Mr / molecular ion (is 46) (b) (i) [1] CH3 (present) (ii) [1] OH (present) [1] (iii) Ethene to ethanol: steam (1) (c) H₃PO₄ (catalyst) (1) Ethanol to ethene: conc H2SO4/ Al2O3/ pumice (1) High temperature > 150°C for H₂SO₄

> 300°C for Al₂O₃/ pumice (1)

Total [14]

[4]

[4]

(b) (l) T neutral and sweet-smelling therefore an ester (1)
Infrared spectrum at 1750 cm⁻¹ shows C=O and at 3000 cm⁻¹ shows
O=H therefore X is an acid (1)

Y is an alcohol, formed from ethanal must be ethanol (1)

5 carbons in ester therefore X must be propanoic acid (1)

Structure of T is

QWC Legiblity of text; accuracy of spelling, punctuation and grammar, clarity of meaning (1)

> Selection of a form and style of writing appropriate to purpose and to complexity of subject matter (1) [2]

(II) I Reagent to form Y is NaBH₄ / LIAIH₄ [1]

II Sulfuric acid acts as a catalyst / removes water so pushes equilibrium to right [1]

(C) CH₂(CH₂) 0.1 to 2.0 ppm triplet (1) (CH₃)CH₂O 3.5 to 4.0 ppm quadruplet (1) CH₂CO 2.5 to 3.0 ppm singlet (1) CH₂CO 2.0 to 2.5 ppm singlet (1) [4] (d) Isomer P (1) Only P can form hydrogen bonds between molecules (1) Hydrogen bonds are the strongest intermolecular bonds / need more energy to break hydrogen bonds (1) [3] QWC The Information is organised clearly and coherently, using specialist vocabulary where appropriate m

Total [20]